
1

In The Compute Block:
Issues Associated with Using and Naming Variables

Arthur L. Carpenter
California Occidental Consultants

ABSTRACT
In the compute block of the PROC REPORT step variables can be both created and used. They may be on the
incoming data table, they may be computed in the REPORT step, they can be statistical summaries, and they may
even be artificially created by the REPORT process. In the DATA step each variable has a name and that
variable’s name is used whenever we want to address a particular value on the Program Data Vector. In the
REPORT step things are not so simple. The origins and use of a variable will determine how it is to be named in a
compute block.

If you do not know how to properly address a variable or report item in the compute block, the compute block will
often fail. This paper will discuss the various variable types, how they are used, and how they are addressed in
the compute block. Once introduced the rules are fairly easy, and a full understanding of the naming conventions
and how they are applied - “use what name when”, will go a long way to allowing you to create more complex and
successful compute blocks in PROC REPORT.

KEYWORDS
PROC REPORT, Compute Block, Computed variables, Composite names, Report items

INTRODUCTION
The compute block is an extremely valuable tool within PROC REPORT, and since it supports the use of many of
the programming statements and functions of the DATA step, it can be used to create columns and manipulate
data. To fully use this power we need to be able to access the incoming variables, as well as, columns and
statistics created in the step itself. These columns and variables have names and as the naming conventions are
not as straight forward as in the DATA step, a more complete understanding of how to access them is required.

The following simple compute block writes the value of the variable REGION using the format $REGNAME. This
compute block is referencing the report item, REGION, which is a variable on the incoming data table.

compute before region;
 line @3 region $regname8.;
endcomp;

There are four ways to reference a variable in a compute block, and you can reference any report item that forms a
column, even columns that are not printed. In the LINE statement of the above compute block, the variable
REGION, which is also a report item and a GROUP variable, is referenced directly (explicitly) by name.

You can reference report items:

• explicitly by name
The variable name can be used directly, as in the above example, when the variable has a define type of
GROUP, ORDER, COMPUTED, or DISPLAY. DATA step variables, variables that are created and only
used in a compute block, are also always addressed by variable name.

• using a compound name
Compound variable names are needed, when a variable with an ANALYSIS define type has been used to
calculate a statistic. The compound name is combination of the variable name and the statistic that it has

2

been used to calculate. The general form is variablename.statistic, and an example of a compound name
might be:

wt.mean

• by specifying an alias
Aliases are specified directly in a compute block. An alias can be specified in the COLUMN statement
when you want to use a single analysis variable in more than one way - generally to calculate more than
one statistic. The following COLUMN statement generates a series of aliases for the HT analysis variable.

columns region ht
ht=htmin ht=htmax

 ht=htmean ht=htmedian;

In the compute block the alias is addressed directly as in:

compute after;
line @3 'Minimum height is ' htmin 6.1;

endcomp;

• directly using the report column number
Sometimes as the report is constructed a given column may not have a specific name. This is especially
the case when a variable, with the define type of ACROSS, creates a series of columns. These, and
indeed any column in the report, can be referenced by using the column number as an indirect column
reference. This pseudo variable name is always of the form

Cxx

where the xx is the column number as read from left to right on the report. The column count should
include any columns that will ultimately not print e.g. those columns defined with NOPRINT or NOZERO.

The REPORT step also creates an automatic temporary variable named _BREAK_. This variable is addressed
directly and is available during the execution of the compute block.

DIRECT VARIABLE NAME REFERENCE
When a variable has the define type of DISPLAY, that variable’s name is used explicitly in compute blocks. This is
shown in the following example which calculates a computed column.

The Body Mass Index, BMI, is a rough measure of health, and for most adults a BMI between 18.5 and 24.9 is
generally considered to be in the normal range. The following example calculates the BMI for the students in the
SASHELP.CLASS data set.

title1 'Extending Compute Blocks';
title2 'Using Variable Names';

proc report data=sashelp.class nofs;
 column name weight height BMI;
 define name / display;
 define weight / display;
 define height / display;
 define bmi / computed format=4.1 'BMI';
 compute bmi;
 bmi = weight / (height*height) * 703;
 endcomp;

3

Extending Compute Blocks
Using Variable Names

 Name Weight Height BMI
 Alfred 112.5 69 16.6
 Alice 84 56.5 18.5
 Barbara 98 65.3 16.2
 Carol 102.5 62.8 18.3
 Henry 102.5 63.5 17.9
 James 83 57.3 17.8
 Jane 84.5 59.8 16.6
 Janet 112.5 62.5 20.2
 Jeffrey 84 62.5 15.1
 John 99.5 59 20.1
 Joyce 50.5 51.3 13.5
 Judy 90 64.3 15.3
 Louise 77 56.3 17.1
 Mary 112 66.5 17.8
 Philip 150 72 20.3
 Robert 128 64.8 21.4
 Ronald 133 67 20.8
 Thomas 85 57.5 18.1
 William 112 66.5 17.8

NOTE: Variable height is uninitialized.
NOTE: Variable weight is uninitialized.
NOTE: Division by zero detected at line 1 column 15.

 run;

In this example the two variables HEIGHT and WEIGHT have a define type of DISPLAY. When DISPLAY
variables are used in a compute block they are referenced directly.

If these same variables had been designated as ANALYSIS (which is typical, and the default for numeric variables
without DEFINE statements), the previous compute block would not have worked (see the same example in the
next section using these variables with a define type of ANALYSIS). The LOG would contain the following
message, which seems to be wrong and is therefore confusing.

Of course the variables HEIGHT and WEIGHT do exist and are initialized, but they have different names in the
compute block when they have a define type of ANALYSIS.

The following example converts the weight of each class member from pounds to kilograms. Notice that the
compute block is associated with a variable with a type of DISPLAY.

title1 'Extending Compute Blocks';
title2 'Using Variable Names';
title3 'Converting Pounds to Kilograms';

proc report data=sashelp.class nofs;
 column name sex ('Weight' weight);
 define name / order 'Name';
 define sex / display 'Sex';
 define weight / display format=6. 'Kg';
 compute weight;
 weight = weight / 2.2;
 endcomp;
 run;

4

Extending Compute Blocks
Using Variable Names
Converting Pounds to Kilograms

 S
 e Weight
 Name x Kg
 Alfred M 51
 Alice F 38
 Barbara F 45
 Carol F 47
 Henry M 47
 James M 38
 Jane F 38
 Janet F 51
. . . Portions of the report are not shown . . .

The compute block will execute for each row of the report, and since WEIGHT has a define type of DISPLAY a
direct variable reference is used in the compute block to name the variable to be converted.

DATA step variables are always created in compute blocks and are always addressed explicitly using the variable
name. This is demonstrated in the following example that counts observations using DATA step variables.

One of the default features of PROC PRINT is the OBS column. The following example adds this observation
counter for PROC REPORT output. In the compute block where the OBS column is computed two variables are
used. The variable CNT does not appear on the COLUMN statement and is therefore a DATA step variable. Its
value will be retained from row to row, consequently a SUM statement is especially useful ì. The value of CNT,
which is the current row number, is assigned to the computed variable OBS í.

title1 'Extending Compute Blocks';
title2 'Using Variable Names';
title3 'Creating an OBS Column';

proc report data=sashelp.class nofs;
 column obs name sex weight;
 define obs / computed 'Obs' format=3.;
 define name / order 'Name';
 define sex / display 'Sex';
 define weight / display format=6.2 'Weight';
 compute obs;
 cnt + 1;
 obs = cnt;
 endcomp;
 run;

The resulting table becomes:

5

Extending Compute Blocks
Using Variable Names
Creating an OBS Column

 S
 e
 Obs Name x Weight
 1 Alfred M 112.50
 2 Alice F 84.00
 3 Barbara F 98.00
 4 Carol F 102.50
. . . Portions of the report are not shown . . .

Extending Compute Blocks
Using Compound Variable Names

 Name Weight Height BMI
 Alfred 112.5 69 16.6
 Alice 84 56.5 18.5
 Barbara 98 65.3 16.2
 Carol 102.5 62.8 18.3
 Henry 102.5 63.5 17.9
 . . . Portions of the report are not shown . . .

Notice that the computed variable OBS and the Data Step variable CNT are both addressed specifically.

FYI - The problem of the generation of the OBS column is specifically addressed by Pass (2000).

COMPOUND VARIABLE NAMES
In the first example of the previous section, the BMI is calculated for the students in SASHELP.CLASS. In that
example the variables WEIGHT and HEIGHT received a define type of DISPLAY and the variables were address
explicitly using their names. When the define type of ANALYSIS is used, the variables cannot be address
explicitly, instead the use of compound names is required.

title1 'Extending Compute Blocks';
title2 'Using Compound Variable Names';

proc report data=sashelp.class nofs;
 column name weight height BMI;
 define name / display;
 define weight / analysis;
 define height / analysis;
 define bmi / computed format=4.1 'BMI';
 compute bmi;
 bmi = weight.sum / (height.sum*height.sum) * 703;
 endcomp;
 run;

A compound name is always going to be a combination of the variable name and a statistic. When a statistic has
not been specified, the statistic will be the SUM.

It is because HEIGHT and WEIGHT are analysis variables, that compound names are required in the compute
block. Whereas the following assignment statement worked in the first example of the previous section, it would

6

 Using an Alias

 Weight in Pounds
 Sex Min Max Range
 F 50.5 112.5 62.0
 M 83.0 150.0 67.0

not have worked here, because compound names are not being used.

compute bmi;
 bmi = weight / (height*height) * 703;
endcomp;

USING AN ALIAS AS A COLUMN REFERENCE
A variable alias is created on the COLUMN statement, and once created, each alias can be associated with a
DEFINE statement. When aliases are used in a compute block they are addressed using the alias name and not
the original variable’s name.

In the following example the alias WTMAX, which is created with the specification WT=WTMAX in the COLUMN
statement, allows the you to use the report item WT in two different DEFINE statements. This alias can then be
used directly in the compute block.

title1 'Using an Alias';

proc report data=sashelp.class nofs;
 column sex ('Weight in Pounds' weight weight=wtmax wt_range);
 define sex / group format=$3.;
 define weight / analysis min 'Min' format=5.1;
 define wtmax / analysis max 'Max' format=5.1;
 define wt_range / computed 'Range' format=5.1;
 compute wt_range;
 wt_range = wtmax - weight.min; ì
 endcomp;
 run;

Notice the use of the compound name weight.min in the compute block assignment statement ì. Because
WTMAX is an alias, the following assignment statement would not work:

 wt_range = wtmax.max - wt.min;

Nor could we ignore the compound name for the analysis variable WT. The following assignment statement would
also fail.

 wt_range = wtmax - wt;

USING INDIRECT COLUMN REFERENCES
Derived columns, such as those created using the ACROSS define type, will not have a column name on the
COLUMN statement. When these columns are used in a compute block, an indirect column reference is required.

In the following example the ratio of the mean weight of the two genders is calculated. Since we want the weight
of the females to be the numerator we use _c3_ / _c2_ as the ratio.

title1 'Using Indirect Column References';

7

proc format;
 value $gender
 'M' = 'Male'

 'F' = 'Female';
 run;

proc report data=sashelp.class nofs split='*';
 column age ('Mean Weight*in Pounds' sex,weight ratio);
 define age / group width=10 'Age';
 define sex / across 'Gender'
 format=$gender.
 order=data;
 define weight / analysis mean format=6. ' ';
 define ratio / computed format=6.3 'Ratio*F/M ';
 rbreak after / skip summarize;
 compute ratio;
 ratio = _c3_ / _c2_;
 endcomp;
 run;

We verify that the weight for males is in the second column (_C2_) and that the weight of the females is in the third
column (_C3_).

Since the column numbers of the table are used, the programmer must have a certain knowledge of the final table
before selecting the numbers used in the indirect reference. In the previous example we know that in the incoming
data table the first observation is for a male patient and that the ORDER= option has been set to DATA. Changing
the DEFINE statement for SEX to use ORDER=FORMATTED

define sex / across 'Gender'
 format=$gender. order=formatted;

would place FEMALES in column 2 and the assignment statement for RATIO would be:

compute ratio;
 ratio = _c2_ / _c3_;
endcomp;

 Using Indirect Column References

 Mean Weight
 in Pounds
 Gender
 Male Female Ratio
 Age F/M
 11 85 51 0.594
 12 104 81 0.780
 13 84 91 1.083
 14 108 96 0.895
 15 123 112 0.916
 16 150 . .
 109 90 0.827

8

Using Indirect Column References

Obs Age _C2_ _C3_ ratio _BREAK_

 1 11 85.00 50.500 0.59412
 2 12 103.50 80.750 0.78019
 3 13 84.00 91.000 1.08333
 4 14 107.50 96.250 0.89535
 5 15 122.50 112.250 0.91633
 6 16 150.00 . .
 7 . 108.95 90.111 0.82709 _RBREAK_

USING THE AUTOMATIC TEMPORARY VARIABLE _BREAK_
As PROC REPORT executes, the data is summarized and held in memory before being transferred to the report
itself. One of the columns in this intermediate summary is the automatic variable _BREAK_. This column is used
to identify lines were generated as a result of grouping variables, BREAK, or RBREAK statements.

Adding an OUT= option to the PROC statement in the previous example allows us to get a glimpse of this
temporary table.

proc report data=sashelp.class nofs split='*'
 out=temptbl;
 statements not shown
 run;

proc print data=temptbl;
 run;

The resulting data table is shown below. _BREAK_ is a character variable and can be addressed directly in the
compute block. It has missing values for the detail rows of the report, however for the line that is generated for the
report break, the variable _BREAK_ is equal to ’_RBREAK_’. Notice that AGE is missing for the summary line.

The _BREAK_ variable can be very valuable when using logic statements within compute blocks that need to
detect group boundaries.

SUMMARY
Depending on the type of variable and how it is used there are different ways to name variables within the PROC
REPORT’s compute block:

• Direct reference for DISPLAY variables, variable aliases, and DATA step variables

• Compound names for ANALYSIS variables and their associated statistics

• Indirect naming of columns by report column number

There is also the special temporary variable, _BREAK_, which is available for use in programming statements
within the compute block. This variable is also addressed directly by name.

ABOUT THE AUTHOR
Art Carpenter’s publications list includes three books, and numerous papers and posters presented at SUGI and
other user group conferences. Art has been using SAS® since 1976 and has served in various leadership
positions in local, regional, national, and international user groups. He is a SAS Certified ProfessionalTM and

9

through California Occidental Consultants he teaches SAS courses and provides contract SAS programming
support nationwide.

AUTHOR CONTACT
Arthur L. Carpenter
California Occidental Consultants
P.O. Box 430
Vista, CA 92085-0430

(760) 945-0613
art@caloxy.com
www.caloxy.com

REFERENCES
Pass, Ray, 2000, “PROC REPORT - Land of the Missing OBS Column”, Proceedings of the Twenty-fifth Annual

SAS® Users Group International Conference, Cary, NC: SAS Institute Inc., paper 105-25, pages 559-560.

Portions of this paper were borrowed, with permission, from Arthur L. Carpenter’s forthcoming book on PROC
REPORT.

TRADEMARK INFORMATION
SAS, SAS Certified Professional, and all other SAS Institute Inc. product or service names are registered
trademarks of SAS Institute, Inc. in the USA and other countries.
® indicates USA registration.

