
ODS and Web Enabled Device Drivers:
Displaying and Controlling Large Numbers of Graphs

Arthur L. Carpenter and Richard O. Smith
Data Explorations

ABSTRACT
With the advent of the Output Delivery System, ODS, it has
become much easier to generate graphs that can be
displayed online. ODS works with web enabled device
drivers such as GIF, HTML, and WEBFRAME to create
graphs that can be browsed and even interactively modified
by the user. Coordination becomes problematic however,
when a large number of graphs need to be displayed. Tools
and techniques are available that permit the programmer to
create hot zones that allow the user to drill down through
graphs and index tables to find the graphs of interest.
Coding techniques, including the use of macros to control
the process, can be used to simplify the process of
managing, naming, and locating large numbers of graphs.
Although primarily directed to graphical displays of the
data, many of these same techniques can be applied to
reports and data summaries.

KEYWORDS
Output Delivery System, ODS, HTML, WEBFRAME,
macro, GIF, GIFANIM

INTRODUCTION
The Output Delivery System, ODS, can be used to produce
graphs that can be redisplayed through the use of standard
internet browsers. In the production environment this often
means the generation of a large number of graphs. It
becomes problematic to locate, name, point to, and redisplay
all of these graphs in such a way as to be fairly easy for the
user and fairly automatic for the programmer.

In the production environment, the primary issue becomes
one of management. The graphs and reports must be named
and placed in an accessible location. When programs are
rerun and graphs are updated or regenerated, the naming
conventions must be well enough defined so that the correct
graphs are replaced. The longer naming conventions of
Version 8 make this easier, however constraints such as
limitations within the naming of graphical catalog entries
must be dealt with.

Once created, the graphs must then be placed in a location
that is automatically determined within the production
process, and if the location does not already exist, it must be
created. This automated process requires a standardized and
well thought out naming convention.

In some of the examples below, a series of survival analyses
have been conducted for a variety of different models.

Because each model will generate as many as 30 graphs and
tables, the naming conventions and locations were
determined to a large extent by a model designation code.

CONTROLLING LOCATIONS
The physical location for the various files must be controlled
as part of the automated process. You can determine if a
specific location (in this case a directory) exists through the
use of the FILEEXIST function. Since for discussion
purposes here we are operating in the macro environment,
%SYSFUNC is used to call FILEEXIST, and if needed
%SYSEXEC is used to create the new directory.

* Make sure that the hazardratios
* directory exists;
%let rc =
%sysfunc(fileexist("&drive\&project\hazardrat
ios"));
%if &rc=0 %then %do;
 %* Make the directory;
 %sysexec md &drive\&project\hazardratios;
%end;

Notice that the location of the directory and portions of the
path are controlled by macro variables (&DRIVE and
&PROJECT). These are set up by the application to make
sure that all files and directories can be located by the
application when it is time to retrieve them. These same
macro variables are used whenever it is necessary to point to
the primary or upper portion of any path within the
application.

USING ODS TO CONTROL THE DESTINATION
HTML files will be generated through a variety of methods
with an application. Depending on how they are built, these
files can be used to point to other HTML files, GIF files, or
other tables and graphs. Tables stored as HTML files can be
used as indexes, which can be used to point to another level
of graphs, tables, reports or even to another level of indexes.
HTML files are also built by SAS/GRAPH drivers
(primarily HTML and WEBFRAME device drivers) to
‘wrap up’ graphs in the form of GIF files.

The ODS HTML statement is used to name and point to
these HTML files. The PATH= option designates the
directory (notice the use of the same macro variables). The
URL=NONE is used to build relative links within the
HTML file. This allows you to move the files to another
location such as a server. The BODY= option specifies the
name of the file itself.

ods html path =
"&drive\&project\hazardratios"

(url=none)
 body =

"HR_&&rptgrp&i.._&&hrgrp&i...html";

In this example, macro variables in the general form of
&&VAR&I have been built based on values within the
data. These macro variables in turn are used to determine
the name of the HTML document. The ODS statement
above resides inside of a macro %DO loop. After macro
variable resolution, the name will resolve to something like
‘HR_7_3.html’. By making the names of the files data
value based, the program will not need modification when
new report or data combinations are added. Discussion on
how to build and control the macro variables can be found in
a number of sources covering advanced macro programming
techniques. These include: (Burlew, 1998), (Carpenter and
Smith, 2002), and (Carpenter, 1998).

When a series of graphs or tables are to be added to an
HTML file, additional options can be used to build a ‘Table
of Contents’ for the various components. In the following
example, the FRAME=, CONTENTS=, and PAGE= options
are added to the ODS HTML statement.

* ODS HTML coordination using FRAME;
ods listing close;
ods html path = "&drive\&project\tables\"
 body = 'multiple.html'
 contents= 'multcontents.html'
 page = 'multpage.html'
 frame = 'multframe.html'
 (title='Magdata Analysis');

ods proclabel 'Data Summary';
proc univariate data=sasclass.magdata;
 var ampida ampidb;
 title1 'Magdata Summary';
 run;

ods proclabel 'Distribution';
proc gchart
data=sasclass.magdata(where=(ampida>100));
 hbar Ampida;
 title2 'Ampida Distribution';
 run;
 quit;
ods html close;

When the file named by the FRAME= option is browsed,
the user sees a display such as the one shown below. This
allows the individual objects created by the UNIVARIATE
and GCHART procedures to be selected directly.

A number of ODS statements and options are available to
enhance this type of output file. Of these, the ODS
PROCLABEL statement and the TITLE= option are shown.

GRAPHICS DEVICES
Several of the newer graphics device drivers are especially
appropriate when you are publishing to the web. Most of
these produce GIF files, and indeed there is even a GIF
device. The problem with building a series of individual
GIF graphics files is that the user must browse them
individually. The devices HTML and WEBFRAME solve
this problem by wrapping up a series of GIF graphs in a
single HTML document. Like one stop shopping the reader
now needs to browse only one file to see all the graphs.

The WEBFRAME device creates two GIF files for each
graph, full size and thumbnail. An HTML file is then
created that ‘wraps up’ these various GIF files. The user
needs to only browse the one HTML file to see any of the
graphs and selection of one of the small thumbnail versions
brings that graph up for display. A portion of a display
generated with the WEBFRAME device is shown below.

filename regplt
 "&drive\&project\results\regsctr";

goptions device=webframe gsfname=regplt;

symbol1 c=blue v=dot r=45;
axis1 label=(a=90 f=simplex c=blue

'Adjusted Rate');
title2 'County Data Plots';
proc gplot data=sasclass.cnty;
.... more code

To use this device, use a FILENAME statement to point to a
directory (not to a file!). The device will then create a series
of HTML and GIF files in this directory. One of these will
be named INDEX.HTML, and this is the one that your
application should have your user browse.

Obviously WEBFRAME is most useful when a series of
graphs are to be displayed. One of its limitations, however,
is that it cannot be used across PROC step boundaries. This
means that you would be unable to combine the results of a
PROC GPLOT with a PROC GCHART within the same
display.

Fortunately we can get around this problem by utilizing
NODISPLAY and saving all the graphs of interest as
graphics entries (entry type of GRSEG) in a catalog. These
graphs can then all be redisplayed using PROC GREPLAY
in a single step. This process is described in detail in the
following section.

USING WEBFRAME WITH GRSEG CATALOG
ENTRIES
Whenever a SAS/GRAPH procedure creates a graph, an
entry is also created in a catalog. Unless otherwise
specified, the catalog is WORK.GSEG and the entry type is
GRSEG. The name of the entry can be specified by the
user, but otherwise it takes on the value of the name of the
procedure that generated the graph. A PROC GPLOT,
therefore would create an entry named
WORK.GSEG.GPLOT.GRSEG. If a second plot is
generated by GPLOT, the entry name becomes GPLOT1
and so on.

When the objective is to display a number of graphs from
different procedures using a single WEBFRAME, each
graph needs to be stored as a catalog entry. Since the
storage is temporary, a WORK catalog can be used. If each
graph in the work catalog is to be redisplayed, the catalog
should be cleared first. The following PROC DATASETS
will delete the catalog so that it can be recreated fresh.

*clear the default graph catalog;
proc datasets library=work mt=cat nolist;
 delete gseg nofs ;
 quit;

WEBFRAME utilizes the name of the graphics entry as the
label for the thumbnail, so the default naming behavior is
less than desirable, e.g. gplot, gplot1, gplot2, etc.
Fortunately the entry name can be specified by the user
through the use of the NAME and DESCRIPTION options.
In the following example, one plot is generated for each call

to GPLOT. The macro variables used in the NAME= option
provide a unique name for the graph.

goptions nodisplay;
proc gplot data=pltdat ;
 plot hrplt*Q=pltvar/

skipmiss nolegend
 vaxis=axis1
 name = "H&&cmod&i&®im&i"
 des = "&&model&i &®im&i";
 run;
 quit;

Since there is no reason to display the graph at this time, the
graphics option NODISPLAY is used. Rather the display is
saved in a catalog for redisplay later when the WEBFRAME
device can be used. Also notice that although Version 8
allows longer variable names, the catalog entry can still
have no more than 8 characters, so care must be taken when
constructing a value for the NAME= option. In the
following step, all of the graphics entries with names
starting with ‘H&&cmod&i' are selected for plotting by
placing a list of their names into the macro variable
&SUMPLOTS.

* create macro containing list of the plots;
data _null_;
 set sashelp.vcatalg;
 where libname = 'WORK'

and memname = 'GSEG'
and objname =: "H&&cmod&i";

 length sumplots $20000;
 retain sumplots ' ';
 sumplots = trim(sumplots)||

 ' '||trim(objname);
 call symput('sumplots',

trim(left(sumplots)));
 run;

If the 8 characters in the name are not enough, the
DESCRIPTION= option can also be used to store
information. This information can also be used to determine
subsets in much the same way as the name was used in the
previous DATA _NULL_ step. In this example, the names
of the selected plots are stored in a macro variable
(&SUMPLOTS).

The procedure GREPLAY is used to redisplay the selected
graphs. The REPLAY statement specifically names the
plots to be redisplayed, in this case the list is stored in the
macro variable &SUMPLOTS.

filename webloc
"&drive\&project\hazardratios\HR&&cmod&i";
 * Wrap the various graphs with html;
goptions dev=webframe display gsfname=webloc;
proc greplay igout=gseg nofs;
 replay &sumplots;
 run;
 quit;

Remember that among all the files generated within the
designated directory, there will always be one named
INDEX.HTML. Have your user browse this file to see all

of the individual graphs and thumbnails.

BUILDING AN INDEX WITH PROC PRINT
In the previous example, a series of graphs were built using
the WEBFRAME device. Each execution of the GREPLAY
wrote another series of graphs to another directory. The
user can now display all of the graphs in a given
subdirectory simply by going to that directory, finding the
‘index.html’ file, and browsing it. This is still quite a
challenge if there are a lot of directories and/or if there are
many graphs within any given directory. What we next
need is a single file that, when browsed, will direct the user
to the correct index file / directory combination by a simple
click of the mouse. We will create this file with a simple
PROC PRINT.

The data set to be printed must contain a variable whose
value is a valid HTML anchor tag that references the name
of another file. The form of this link (GRPREF in the
following DATA step) includes the value to be displayed
(the report group in this case which is stored in CRPTGRP),
and the name/location of the file to branch to branch to (the
link is stored in the variable MYLINK).

data prep2;
 set prep1;
 length grpref mylink $150 crptgrp $3;
 *rptgrp+1;
 crptgrp= trim(left(put(rptgrp,3.)));
 myLink = "\\&project\hazardratios\hr"||

trim(crptgrp)||'\index.html';
 grpref = "<a HREF="||trim(myLink)||

'>'||trim(crptgrp)||''
 label grpref = 'Report Group';
 run;

* Define location and index name for the
* new index;
ods html path="&drive\&project\&outloc"

 (url=none)
 body="&indexname..html";
%put going to "&drive\&project\&outloc";
ods listing close;
proc print data=prep2 label noobs;
 var grpref groupdesc;
 title1 "&title Control File: &indsn";
 run;
ods html close;

When the file generated by the PROC PRINT is displayed,
only the portion of the variable GRPREF that came from the
variable CRPTGRP will be displayed. When the user
selects one of these values, the corresponding
INDEX.HTML file, which was built by WEBFRAME, will
be displayed.

In a more complex study or analysis presenting more than
one level of PROC PRINT indexes may be needed. Perhaps
the first level selects general types of reports or general
areas of interest. A selection here then points to a secondary
index that allows the reader to further select the set of
graphs of interest. Effectively this process creates a Table

of Contents that passes the reader directly to the graphs of
interest.

CREATING DRILL-DOWN GRAPHS AND CHARTS
Not only do we want to be able to use the tools discussed
above to locate and display a specific graph, we may also
want to use the graph itself to point to more information. As
we browse the graph created using the techniques shown
above, we want to be able to create ‘hot zones’ that allow us
to drill down through a portion of a graph by clicking on a
bar, line, or symbol, so that we can then display and browse
another related graph or table.

In the example, below both a histogram and a scatter plot
are generated as GIF files. Each of these graphs contains
information that is STATION specific. When browsing, if
the cursor is moved over a station specific portion of the
graph, a ‘hot zone’, it changes to a pointer. The pointer
indicates that clicking on that hot zone will cause a branch
to another file or graph. In this case the branch will be to a
table created by PROC PRINT of that station’s data.

First we create a PROC PRINT for each value of the
variable STATION. Notice that the name of the HTML file,
the TITLE, and the value of the variable STATION in the
WHERE clause all contain the name of the station (AZU in
this example).

* List the AZUSA data;
ods html path="&drive\&project\figures"

(url=none)
 body='azu.html';
proc print data=sasclass.ca88air

(where=(station='AZU'))
 noobs;

 var month co o3 no3 tem;
 title1 'AZU Pollution';
 footnote;
 run;
ods html close;

In the production environment it is likely that the list of
stations will be stored in a macro array. The PROC PRINT
can then be placed in a %DO loop. This allows the
automated generation of the secondary files as shown below.

%do i = 1 %to &stacnt;
* List the &&sta&i data;
ods html path="&drive\&project\figures"

(url=none)
 body="&&sta&i...html";
proc print data=sasclass.ca88air

(where=(station="&&sta&i"))
noobs;

 var month co o3 no3 tem;
 title1 "&&sta&i Pollution";
 footnote;
 run;
ods html close;
%end;

The key to pointing to the secondary files (created by PROC

PRINT above) is a character variable that contains a
reference file pointer. The form of the value of this variable
will be “href=xxxxxxx.html”, where xxxxxxx is data
dependent (in this case the station name).

In the data set to be plotted, we create a variable,
DRILLSTA, which contains the name of the station as part
of the file pointer.

data ca88air;
 set sasclass.ca88air;
 length drillsta $15;
 drillsta = 'href='||trim(left(station))||

 '.html';
 run;

This variable is utilized by the PROC GCHART in the
VBAR statement through the HTML= option. Notice also
that we are using the GIF device, although other devices
such as WEBFRAME, which was shown above, could also
be used.

goptions device=gif;
ods html path="&drive\&project\figures"

(url=none)
 body='chart.html';
PROC GCHART DATA=ca88air;
 VBAR station / type=mean sumvar=o3
 patternid=midpoint
 subgroup=station
 html=drillsta
 raxis=axis1 maxis=axis2;
 run;
 quit;
ods html close;

For reasons that are not entirely clear to us, the
SUBGROUP= option is also sometimes required with
VBAR and HBAR chart types in order to make use of the
HTML= option. This is true for this chart even though the
SUBGROUP= option is not otherwise needed.

It is also possible to create hot zones in a scatter plot. In the
following example, the same data that was used above is
also plotted. In this case there is one line per station.
Because the DRILLSTA variable is a constant for each
station, each line becomes a separate hot zone.

goptions device=gif;
ods html path="&drive\&project\figures"

(url=none)
 body='gplot.html';
proc gplot DATA=ca88air;
 plot o3*month=station /
 html=drillsta
 htmllegend=drillsta
 vaxis=axis1;
 run;
 quit;
ods html close;

The HTMLLEGEND= option creates hot zones in the
legend as well. In this example, the variable DRILLSTA is
constant for each station. If instead it had been unique for

each plotted point, then each point could have been a
separate hot zone.

USING NON-STATIC DRIVERS
Device drivers such as ACTIVEX and JAVA allow you to
create graphs that are not static. These graphs can be
manipulated by the user of the graph as it is browsed.

ACTIVEX
The ACTIVEX driver allows the developer to build graphs
that can be changed and adapted by the user outside of
SAS/GRAPH. Unlike the GIF, WEBFRAME, and HTML
devices this device creates an HTML file, not a GIF file.

In order to control the size of the graph and to prevent it
from not fitting on the browser screen, the XPIXELS= and
YPIXELS= options are often needed. The values taken on
by these two options will depend on the display resolution
used by the person browsing the resulting HTML file.

goptions reset=all border ftext=simplex;
goptions device=activex
 xpixels = 640
 ypixels = 480;

pattern1 c=cyan;
pattern2 c=yellow;
pattern3 c=red;

ods html
body="&drive\&project\figures\SummerO3.html";

PROC GCHART DATA=sasclass.ca88air;
 where month in(6 7 8);
 VBAR3D station / type=mean sumvar=o3
 shape=cylinder
 cframe=pink
 group=month
 patternid=midpoint;
 TITLE1 'Average Summer Ozone
Concentrations';
 title2 'Three Dimensional Chart
Elements';
 title3 a=90 f=simplex h=1 'Parts per
Million';
 footnote1 h=1 f=simplex 'Summer Months';
 run;
 quit;
ods html close

This code generates the following graph.

JAVA
The JAVA driver builds the JAVA components so that when
the HTML file is browsed, the appropriate JAVA Applets
construct the graph. Like the ACTIVEX graphs, these
graphs are not static to the user and can be reshaped,
resized, and otherwise greatly modified. As in the example
for the ACTIVEX device, notice the use of the XPIXELS=
and YPIXELS= options to control the initial size of the
graph.

The PARAMETERS= option in the ODS HTML statement
is used to place parameters and associated values into the
JAVA code. In this case, the DRILLDOWNMODE
parameter receives a value of LOCAL.

goptions reset=all border ftext=simplex;
goptions device=java
 xpixels = 600
 ypixels = 600;

pattern1 c=cyan;
pattern2 c=yellow;
pattern3 c=red;

ods html file=
 "&drive\&project\figures\SummerMonth.html"
 parameters=("DRILLDOWNMODE"="LOCAL");

PROC GCHART DATA=sasclass.ca88air;
 where month in(6 7 8);
 VBAR3D station / type=mean sumvar=o3
 shape=cylinder
 cframe=pink
 group=month
 patternid=midpoint;
 TITLE1 'Average Summer Ozone
Concentrations';
 title2 'Three Dimensional Chart
Elements';
 title3 a=90 f=simplex h=1 'Parts per
Million';
 footnote1 h=1 f=simplex 'Summer Months';
 run;
 quit;
ods html close;

ANIMATED GIF GRAPHS
The device GIFANIM can be used to create a graph, which
when viewed, appears to be animated. In fact, a series of
distinct graphs are produced and then displayed in
succession. This might show a process through time or a
plot from different perspectives.

This driver is a bit more advanced than the others and
requires a bit more care on the part of the programmer.
Although a single GIF file is created, internally it is
composed of three parts that enable the animation process.
The parts of the file are built through the use of the
GSFMODE option and a short DATA step.

The GIF file is named using a FILENAME statement, and
the resulting fileref is tied to the graph through the use of
the GSFNAME option. First you should initialize the file
with a GSFMODE=REPLACE. Then each graph produced
by successive procedures, BY statements, and graph
definitions results in an animated image. After the first
procedure, you will need to change the GSFMODE to
APPEND. When the last graph has been added to the file, a
short DATA step is executed to add a character to ‘close’
the file.

* Name the Animation file (GIF);
filename animate
"&drive\&project\figures\animate.gif";

goptions reset=all;
goptions dev=gifanim
 gsfmode=replace
 gsfname=animate
 iteration=1
 delay=60;

proc sort data=sasclass.ca88air
 out=ca88air;
 by month station;
 run;

* One Bar chart for each of 12 months;
title h=1 'Average Ozone';
axis1 order=(0 to 6 by 2)
 label=none;
proc gchart data=ca88air;
 by month;
 vbar station / sumvar=o3 type=mean
 raxis=axis1;
 run;

* Prepare for another set of graphs;
goptions gsfmode=append;

* One Bar chart for each station;
proc sort data=ca88air;
 by station month;
 run;
proc gchart data=ca88air;
 by station;
 vbar month/ sumvar=o3 type=mean
 raxis=axis1;
 run;

* Complete the Animation file;
data _null_;
 file animate recfm=n mod;
 put '3B'x;
run;

* Reset the options;
goptions reset=all;

The ITERATION= option is supposed to be used to control
the number of times that the animation is to loop through the
file. This option does not always work as advertised, and all
values (not just 0) often result in continuous loops. The
amount of time that each image is to be displayed is
controlled by the DELAY option, which takes on values in
tenths of seconds. You will need to experiment with this
value as the actual time of display will vary due to a number
of factors (and may not even be consistent among the
images).

SUMMARY
The production and tracking of large numbers of graphs that
are interrelated with tables and other data displays can be
difficult in the production environment. Not only is
coordination required between linked graphs and tables, but
just locating and pointing to the myriad of combinations can
be problematic. Through the use of index tables and graphs
with drill-down hot zones, it is possible to set up an
environment that is much more easily navigated by the user.

Macros and strict naming conventions can be used by the
developer to control the names of the various graphs and
files. This allows a degree of control for the entire process.

A number of graphics device drivers have been developed
which enable the programmer to create a variety of types of
graphs that can be browsed by the user. When these are
coupled with ODS and controlled through the use of macros,
a very robust and expandable system can be created.

Tie these techniques together and you can generate a series
of interconnected tables and graphs in an automated user
friendly environment.

REFERENCES
Bessler, LeRoy and Francesca Pierri, 2002, “%TREND: A
Macro to Produce Maximally Informative Trend Charts with
SAS/GRAPH ®, SAS®, and ODS for the Web or Hardcopy”,
Proceedings of the Twenty-Seventh Annual SAS® Users
Group International Conference, Cary, NC: SAS Institute
Inc., paper 93.

Burlew, Michele M., 1998, SAS® Macro Programming
Made Easy, Cary, NC: SAS Institute, Inc., pp. 280.

Carpenter, Arthur L., 1998, Carpenter’s Complete Guide to
the SAS Macro Language, Cary, NC: SAS Institute Inc., pp.
242.

Carpenter, Arthur L. and Richard O. Smith, 2002, “Library
and File Management: Building a Dynamic Application”,
Proceedings of the Twenty-Seventh Annual SAS® Users
Group International Conference, Cary, NC: SAS Institute
Inc., paper 21.

Watts, Perry, 2002, Multiple Plot Displays: Simplified with
Macros, Cary, NC: SAS Institute Inc., pp.125.

AUTHORS
Richard Smith and Art Carpenter are senior partners at Data
Explorations, a SAS Alliance Silver MemberTM. Both are
SAS Certified ProfessionalsTM and they provide data
management, analysis, and SAS programming services
nationwide.

Arthur L. Carpenter
Art Carpenter's publications list includes three books on
SAS topics (Annotate: Simply the Basics, Quick Results with
SAS/GRAPH® Software, and Carpenter's Complete Guide to
the SAS® Macro Language), two chapters in Reporting from
the Field, and numerous papers and posters presented at
various user group conferences. Art has been using SAS
since 1976 and has served in a variety of positions in user
groups at the local, regional, and national level.

Richard O. Smith
Richard Smith has a masters in Biology/Ecology and has
provided complete data management and analysis services
for numerous environmental research projects as a senior
biologist, SAS programmer, and project manager. He has
also provided programming and management services for
the health related industries. He has been using SAS
extensively since 1981.

AUTHOR CONTACT
Data Explorations

2270 Camino Vida Roble, Suite L
Carlsbad, CA 92009

Arthur L. Carpenter
(760) 945-0613
art@caloxy.com

Richard O. Smith
(760) 438-1336
ROSmith@SciX.com

TRADEMARK INFORMATION
SAS, SAS Alliance, and SAS Certified Professional are
registered trademarks of SAS Institute, Inc. in the USA and
other countries.
® indicates USA registration.

