
P21-27

Library and File Management:
Building a Dynamic Application

Arthur L. Carpenter, Data Explorations
Richard O. Smith, Data Explorations

ABSTRACT
In order for a SAS® application to be dynamic, it
must be able to automatically find the programs that
make it work and the data that it is to work against.
It must know where to write its output and where
to store any new data sets that it creates. More
importantly it must do these things without
intervention on the part of the user. Even more
importantly the application must not confuse the
components of one project or task with those of
another. The structure and organization of the
libraries and directories is central to this ability.

Dynamic applications are written to be portable
across projects and a key component of the
application must necessarily be the structure and
location of appropriate files and libraries. While
many different styles of organization are possible, a
high degree of organization is required. Of course
you will need to know what type and how much
structure is required for your projects.

This paper discusses the issues surrounding the
organization of the libraries and directories
associated with a dynamic application.

KEYWORDS
dynamic application, directory structure,
AUTOCALL libraries, compiled stored macros,
autoexec

INTRODUCTION
Applications that will be used across projects,
systems, and even platforms must be written to
accommodate the variety of situations that will be
encountered. As a developer of the application,
you will need to take into consideration a number
of aspects that will need to be coordinated within

the framework of the application. One of your
critical issues will be to build into the application
the ability to locate and use, not only the programs
that make up the application, but also the data that
are specific to a particular project or task within the
application.
The overall structure of the directories, naming
conventions used within the application, and the
location of libraries and files all play pivotal roles in
determining the success and maintainability of your
application. You need to be able to create a logical
directory structure that will be reusable for each
project. Since many of the programs and macros
used within the application will require dynamic
project specific information, naming conventions
must be established and strictly adhered to. The
location of data, both project specific and data
general to the overall application, must be specified
and consistent. These locations usually depend
heavily on the directory structure.

The examples in this paper are based on
applications developed by the authors. We want to
show you how we solved various problems,
however these solutions are not dictates or even
necessarily the best solution for your own
application. We instead present these solutions
because they have worked for us.

Although the examples in this paper are all based on
applications written for Directory based operating
systems, the concepts apply equally well to file
based systems such as MVS. Also the choices of
path and directory structures presented here are
specific to the presented application and are not
intended to be dictates for your applications.

USING THE AUTOEXEC.SAS

By default whenever the SAS System is started, it
searches for a program called AUTOEXEC.SAS in
the !SASROOT directory, and when present, this
program is automatically executed. The
AUTOEXEC.SAS is an ordinary SAS program; it
can contain DATA steps, macro calls, and macro
variable definitions just as can any other program.
Typically AUTOEXEC.SAS is used to define the
environment of the current SAS session.

Actually you can customize this process by
renaming the program and/or by placing it in some
other directory. Usually the program name of
AUTOEXEC.SAS is not changed but its location is
often changed to a project or task specific location.
SAS must be pointed to the new location, and
under Windows operating systems, this is
accomplished through the use of the -AUTOEXEC
option that is invoked at system initialization. This
option is demonstrated in the example dealing with
creating shortcuts below. For other operating
systems you should consult your SAS Companion
for more details.

Portions of a sample AUTOEXEC.SAS program
are shown below. This AUTOEXEC is used to set
up the environment for an application, which is then
also started from within the AUTOEXEC.

In this AUTOEXEC three macro variables that will
be used throughout the application are globalized
ì. These are &PATH, &TST, and &PROJECT.
Each will be explained in more detail in the section
on Path Control. The macro variable &PATH is
used to declare the top of the directory structure í.
Since all aspects of the application are beneath this
portion of the path, this makes the application
portable from machine to machine or from one
place on the network to another. The macro
variable &TST is used to setup a parallel
test/production environment. During production it
is set to nullî. A project specific name or code is
stored in &PROJECT ï. Together these three
macro variables are used to define the full directory
structure down to the project level.

* Establish GLOBAL Macro variables for this
application;
%global tst path project; ì

* Set up the general path for this application;
%let path = e:\clinical\bigprojs; í

* tst - test (tst) or production ();
%let tst = ; * Production; î

*%let tst = tst; * test environment;

* Project title;
%let project = XYZ; ï

The three macro variables &PATH, &TST, and
&PROJECT are used in the next portion of the
AUTOEXEC to name the location for the macro
autocall libraries ð, which are used to store macro
definitions. Autocall libraries and libraries of
compiled stored macros are discussed later in this
paper. The %LIBNAMES macro ñ is used to
define ALL of the application's librefs and filerefs
and its definition is stored in the autocall library.
The application is then started by using a DM
statement ò.

* Define the location for the macros;
options
noxwait xsync mautosource
sasautos=("&path\&project&tst\pgms\sasmacro" ð

"&path\allproj\pgms\sasmacro");

* Define Librefs and Filerefs for this project;
%libnames ñ

* Execute the application;
dm "af cat=appls.&project..userid.program" af; ò

Usually you will want to use a different
AUTOEXEC.SAS program for each project or task
that you are working on. Under Windows this is
easily accomplished by creating a shortcut for each
task and by making sure that each shortcut points to
its own specific AUTOEXEC program.

In the properties for the shortcut, look under the
SHORTCUT tab for the TARGET: dialog box. It
is here that you will find the command to execute
SAS. Following the\SAS.EXE add the
-AUTOEXEC execution option with the
appropriate path to the AUTOEXEC program:

.....\sas.exe -autoexec
e:\clin\bigproj\xyz\pgms\autoexec.sas

FOLDER OR DIRECTORY STRUCTURE
There is more than one philosophy regarding the
appropriate use of folder and directory structure
when setting up a project or study. Aside from the

all too often encountered, 'put it anywhere-location
does not really matter' philosophy known as
anarchy, there are four structures that are
commonly attempted. These structure types
include:
$ data
$ flat (no discernable sub-folder structure)
$ task
$ project

The determining factor as to which type of
structure will be chosen will be based on where in
the structure hierarchy the primary or common
element resides.

DATA STRUCTURE
When a large common data base is established to be
used by a number of projects or tasks, the data sets
themselves may drive the structure making it higher
in the file hierarchy. A structure built around a data
base for 'InPatient’ and ‘Adverse Event’
information might be something like:

In this scheme the programs for all projects and
tasks reside in directories under the type of data
with which they are associated.

FLAT STRUCTURES
Flat structures minimize subdirectories by placing
most data and program folders on the same level.

While this structure is the least complex (nothing is
hidden in sub-folders), it is not really suitable for
anything other than simple projects and tasks.
Because all folders for all projects are on the same
level, individual projects may be harder to organize.
Simple projects that make use of this structure
probably do not need to take advantage of the
concepts discussed in this paper.

TASK STRUCTURES
Task oriented structures are used when the task or
report is foremost. This structure might be
employed when a common task is applied across
projects and for a variety of data sets. The task
itself is the constant. A task structure might
include:

In this type of structure the data from different
studies may or may not share a common sub-
directory. Usually this structure is used when the
data sets are very similar and the analysis and data
prep programs will work for any study under
consideration.

PROJECT STRUCTURE
Since many of the applications that we have
installed are project based, each with their own
independent data sets and analysis programs, we
most commonly employ a project oriented
structure. We have found that this gives us the
most flexibility when establishing applications that
need to be portable and dynamic. The structure
follows a hierarchy with the project highest in the

directory tree. A typical structure is shown below.

We have found that some programs, especially
macro tools, are used by all projects. We locate
these programs and macros in the \AllProj folder,
which is made available to all the projects by
including it in the AUTOCALL macro libraries.

Because all information specific to a project is
stored under one folder, it is very easy to move,
archive, and locate information on that project.
When the same structure is used consistently for
each project, it becomes fairly easy to locate
specific information across all projects e.g. the AE
data in the \Analysis subdirectory for all projects.
The examples shown below assume a PROJECT
structure, but would apply equally to either the
DATA or TASK structures.

PATH CONTROL
By creating global macro variables that can be used
to identify the locations of the directory structure of
interest it is possible, to construct ALL references
to location (typically librefs and filerefs) to be
independent of file structure except in terms of
these variables.

&PATH
This macro variable contains all of the structure
above the project name. Usually this starts at the
drive letter and extends as many levels as is
necessary to get down to the level above the
project.

&PROJECT
This is a project name or code. Since this variable
may also be used in the titles of project reports or
even as a constant in some of the data sets, it
should be descriptive but not overly long. When
the length of this variable is a problem because of
competing uses, having two variables, one to hold
the project code and another to hold the project
label, may prove to be useful.

&TST
Often it is useful to set up two parallel structures
one for testing and another for production. Since
we want to use the same software for both, but only
want to point to different locations, we can set up a
macro variable that takes on a null value for
production and some code for testing (we use TST
below).

Combining these there macro variables allows us to
specify the all items that change from project to
project outside of the application.

filename critvar
"&path\&project&tst\list\gnrlrpts\critvar.lst";
libname audit
"&path\&project&tst\data\live\audit";

When in the test environment (%let tst=tst;) for
the definitions used above, these two statements
become:

filename critvar
"e:\clinical\bigprojs\xyztst\list\gnrlrpts\critvar.
lst";
libname audit
"e:\clinical\bigprojs\xyztst\data\live\audit";

When starting a new project or when moving a
project from one network drive to another,
changing ALL librefs in all the programs is as
simple as changing one macro variable definition in
one place in the AUTOEXEC.SAS program. A
further discussion of the definition of librefs and
filerefs is included below in the section "Unified

Libref and Fileref Definitions".

USING MACRO LIBRARIES
The use of macros is essential to an automated and
flexible system. This implies that the control of the
macro code is very important to the maintenance of
the application. All to often macro definitions
become buried within the programs that use them.
The result is often a proliferation of multiple
versions of similar macros. Parallel code, two
programs or macros that do essentially the same
thing, is an especially difficult problem in large
applications that are maintained by multiple
programmers. Even when there is only one
programmer, there is a tendency to "clone with
slight modifications" a program.

Macro libraries are used to avoid this problem by
providing a single location for all macro definitions.
Rather than cloning the macro, it is adapted
(generalized) to fit each of its calling programs and
then stored in one of the libraries. Obviously this
requires documentation as well as diligence. Part of
the solution is to place ALL macro definitions in a
common library, which is accessible to all programs
in the application. At least this way no macro
definition will be 'buried' within a program.

There are three types of macro libraries. The least
sophisticated is the use of %INCLUDE files to
store macro definitions. While this solution can
avoid the problems associated with duplicate code,
it is usually inefficient because macro definitions
that are not needed are often loaded along with the
ones that are needed. The AUTOCALL and
Compiled Stored Macros Libraries provide more
efficient solutions.

Macros are compiled before they are executed and
it is possible to store the compiled code for future
use. Compiled macros are stored in a catalog called
SASMACR. By default this catalog is stored in the
WORK library and when a macro is called, SAS
automatically searches this catalog for the compiled
macro. Permanently compiled stored macros are
written to a catalog with the same name, but which
is stored in a different library. The library is

specified using the SASMSTORE= option.
Normally the options to make use of this library are
turned off (NOMSTORED).

The following OPTIONS statement turns on the
use of compiled stored macros and designates the
PROJSTOR libref as the catalog location.

options mstored sasmstore=projstor;

Unlike the AUTOCALL libraries, you cannot use
more than one location reference with the
SASMSTORE option, therefore, if you do want to
search multiple catalogs, you need to use either a
concatenated libref or a concatenated catalog.

The following designates the two librefs
PROJSTOR and ALLMSTOR as the locations that
are to be searched for the compiled stored macro
catalog by concatenating the two locations into a
single libref. If the compiled macro is in more than
one catalog, the definition found first will be used
(read left to right).

libname projstor 'c:\temp';
libname allmstor 'f:\junk';
libname multi (projstor, allmstor);

options mstored sasmstore=multi;

The compiled version of the macro is stored by
including the /STORE option on the %MACRO
statement. For the SASMSTORE definition above
the macro AERPT below will be stored in the
PROJSTOR.SASMACR catalog.

%macro aerpt(dsn, stdate, aelist) / store;

When a macro is not found in the compiled stored
macro library the AUTOCALL library is searched.
This library consists of macro definitions (the code)
that have not yet been compiled. By default the
ability to make use of the AUTOCALL facility is
turned on (MAUTOSOURCE). When a macro is
called, SAS searches for a file in the AUTOCALL
location with the SAME name as the name of the
macro. The code in the corresponding file is then
submitted for processing. Since this file contains
the macro definition, the macro is then compiled
and made available for execution.

The following code makes sure that the autocall
facility is available (MAUTOSOURCE) and
specifies the FILEREFs of the locations
(SASAUTOS=) that contain the SAS programs
with the macro definitions.

options mautosource
sasautos=(projauto allauto sasautos);

Be sure that you use filerefs NOT librefs, and
include the automatic fileref SASAUTOS so that
the autocall macros provided with SAS will also be
available.

UNIFIED LIBREF AND FILEREF
DEFINITIONS
Once the library structure has been formalized it is
equally important that the assignment of librefs
(and filerefs) be controlled in a unified way. The
first step is to never use path information instead of
librefs and filerefs within the program. This means
that LIBNAME and FILENAME statements will be
used to define (all if possible) locations. This
approach makes the programs much more portable
when path information changes.

Additional control can be maintained if as many, as
is possible, of the librefs and filerefs are defined at
a single location within the application. We use a
macro (%LIBNAMES) that contains the
LIBNAME and FILENAME statements. This is an
AUTOCALL macro, and it is called from within the
AUTOEXEC.

A portion of the %LIBNAME macro might
contain:

%macro libnames;
* Libnames used in applications;
libname appls ("&path\allproj\pgms\appls"

"&path\&project&tst\pgms\appls")
access=readonly;

* Filenames;
filename dbdirsas

"&path\allproj\pgms\primary\dedsn.sas";
filename vrdirsas

"&path\allproj\pgms\primary\devar.sas";
filename cmprlog
"&path\&project&tst\list\compare\compare.log";
filename cmprlst
"&path\&project&tst\list\compare\compare.lst";

* Primary Project libnames;
libname coded

"&path\&project&tst\dictnary\live\coded";
libname notcoded

"&path\&project&tst\dictnary\live\notcoded";
libname editlog

"&path\&project&tst\data\live\editlog";
%mend libnames;

Notice that each of the paths utilizes the global
&PATH macro variable and each of the project
specific paths also includes the &PROJECT and
&TST macro variables which were described
above.

SUMMARY
Dynamic applications require a very structured
approach to the organization of the data and
programs. The use of macros and macro libraries
provides a essential tool in the tracking of the
various components, however unless you are
careful when you set up the very structure of the
folders and sub-folders, it becomes very difficult to
coordinate the activities of the application.

How you organize your data and programs should
depend on the kinds of tasks that you perform.
Your application can then be written to take
advantage of this structure. You will need to think
about how your work is performed, and to what
uses your application will be put. When the same
programs are run on similar data sets across
projects, a DATA driven structure may be
appropriate. When the task itself drives what you
will be doing e.g. various programs on the AE data,
you may want to take a TASK approach to the
organization. PROJECT structures apply when
each project or protocol is unique or distinct and
tasks within the project vary.

The use of the AUTOEXEC and of macro libraries
(Compiled/Stored or AUTOCALL) will greatly
assist in the automation of your application.

Dynamic applications are automated applications.
They require planning and forethought, but the
rewards are tremendous gains in efficiency and
organization.

ABOUT THE AUTHORS
Richard Smith and Art
Carpenter are senior partners
at Data Explorations. Data

Explorations, a SAS Alliance Quality PartnerTM,
provides data management, analyses, and SAS
programming services nationwide.

Arthur L. Carpenter
Art Carpenter is a SAS
Certified ProfessionalTM.
His publications list

includes three books on SAS topics (Annotate:
Simply the Basics, Quick Results with
SAS/GRAPH® Software, and Carpenter's Complete
Guide to the SAS® Macro Language), two chapters
in Reporting from the Field, and numerous papers
and posters presented at various user group
conferences. Art has been using SAS since 1976
and has served in a variety of positions in user
groups at the local, regional, and national level.

Richard O. Smith
Richard Smith has a masters in Biology/Ecology
and has provided complete data management and
analysis services for numerous environmental
research projects as a senior biologist, SAS
programmer, and project manager. He has also
provided programming and management services
for the health related industries. He has been using
SAS extensively since 1981.

AUTHOR CONTACT
Data Explorations
2270 Camino Vida Roble, Suite L
Carlsbad, CA 92009

Arthur L. Carpenter
(760) 945-0613
art@caloxy.com

Richard O. Smith
(760) 438-1336
ROSmith@SciX.com

REFERENCES
Burlew, Michele M., SAS® Macro Programming
Made Easy, Cary, NC: SAS Institute, Inc., 1998,
280 pp.

Carpenter, Arthur L., Carpenter's Complete Guide
to the SAS® Macro Language, Cary, NC: SAS
Institute Inc., 1998, 242 pp.

Carpenter, Arthur L. and Richard O. Smith,
"Clinical Data Management: Building a Dynamic
Application", Proceedings of the PharmaSUG
Annual Conference, 2000. Also published in the
Proceedings of the 7th Annual Conference of the
Western Users of SAS Software, 2000, pp3-8.

SAS Institute Inc., SAS® Macro Language:
Reference, First Edition, Cary, NC: SAS Institute
Inc., 1997, 304 pp.

TRADEMARK INFORMATION
SAS, SAS Certified Professional, and SAS Quality
Partner are registered trademarks of SAS Institute
Inc. in the USA and other countries.
® indicates USA registration.

