Data Management:
Building a Dynamic Application

Arthur L. Carpenter, Data Explorations
Richard O. Smith, Data Explorations

ABSTRACT

You have written a series of interesting and often complex
SAS® programs that perform a variety of data entry
operations, data checks, exception reporting, statistical
analyses, and summary reporting. Since the next study is
somewhat similar to the last one, you are planning to build
another set of programs based on (cannibalized from) the
ones that you just used.

We have been there before, but STOP. Wouldn't you rather
build the programs once?

The solution lies in building and using data dictionaries that
act as control files. These control files are in turn used to
create a series of SAS macro variables that are available as
arrays to each of the various programs. All project, data set,
and variable specific information is stored in the macro
variables and hence never in the programs themselves.
Once implemented all the programs in your application
become data independent.

Let them change the data. Let them redefine the project.
Your code is ready.

KEYWORDS
Clinical trial, macro variables, &&VAR&I, CALL
SYMPUT, data dictionary

INTRODUCTION

At the end of the end of a successful project everyone
should be happy with what you have done as a SAS®
programmer. If everything went fairly well then, you are
pleased, the boss is pleased, and the client is pleased. Of
course your job is not really completed. The problem is that
you now need to document what you did, create the data
dictionaries, and prepare for that next study.

Often this means that you will need to reconstruct what you
have done and then modify the existing programs for the
upcoming project. Once modified these programs will of
course then have to go through the validation process again
as well.

Wouldn't you rather build the programs so that they will be
ready to go for the next study regardless of the number of
data sets, names of variables, and error check specifications.
Wouldn't you rather just validate your programs once and
not over and over again? Imagine the savings in change
control management alone with only one version of each

program.

Many studies, including most clinical trials, are very data
intensive. Very often there is a large number of distinct
SAS® data sets, each with a diverse suite of variables, and
the data sets themselves may range from a few to many
observations. Just keeping track of these data sets becomes
a chore for the data base manager.

Management issues become even more intense when an
application is developed that must operate against these data
sets. As part of the data management, analysis, and
reporting process, numerous SAS® programs are usually
written to support the application.

Very often names of data sets, variables, and other data set
and project specific information is embedded within these
programs. This makes it difficult, time consuming, and
expensive to modify the application for another similar
project. A dynamic and automated application will
overcome these limitations by avoiding any project, data
set, or variable dependencies.

How then do we create an application that will work for any
number of data sets, with any number of observations, and
with any combination of variables? How can the
application be written so that it requires little or no recoding
when being ported from one project to the next?

Fortunately, although there are major differences between
studies, many of the tasks are similar. Most studies require
data entry and data validation. Many of the exception and
adverse event captures and reports are similar. Since these
major events are similar across projects, it ought to be
possible to generalize our programs so that they need not be
modified for each project.

Indeed it is possible to build the SAS programs so that they
are general enough to work for each of your studies. The
answer lies in the creation of data dictionaries that can be
used as control files to build a series of macro variables,
which are in turn used dynamically by the application. The
key is to build a structure into your programs that is based
on those things that are common to all projects. Some of
these commonalities include: project identification, library
and folder relationships, data sets with specifiable
characteristics, variables within data sets with specifiable
characteristics, and variable specific value constraints
(Carpenter and Smith, 2002).

CONTROL FILES

The data dictionaries or control files become both the
starting point and heart of the control process. This means
that the addition of a new data set into the study or a change
in a data set's variables may be as simple as changing one
control file. Done properly, all of the programs that depend
on these control files will require NO modification when the
control files are changed. This also implies that
implementing a new study is as simple as building a new set
of data dictionaries, and, of course, this is something that
you would be doing anyway.

The control files can be SAS data sets, Excel tables, or even
flat files. Ultimately it is usually easiest to build and
maintain these control files as SAS data sets through the use
of a SAS/AF® or FRAME application. The variables that
will be contained within these control files will depend of
course on how you use them. The three control data sets
shown below are the primary ones of the several that you
may need (for demonstration purposes each has been
simplified). They are:

DBDIR Data set definitions
VRDIR Variables within data sets
FLDDIR Data field constraints

Each column or variable in these data sets will become a
vector of macro variables with one macro variable for each
data value in the data set.

DBDIR

This data set will contain one observation for each data set
in the project. In addition to the data set name, variables
often include CRF page number, key variables, data set
label, other data set specific information such as might be
required by the various analysis programs.

OBS DSN PAGE KEYVAR
1 DEMOG 1 SUBJECT
2 MEDHIS 2 SUBJECT MEDHISNO SEQNO
3 PHYSEXAM 3 SUBJECT VISIT REPEATN SEQNO
4 VITALS 4 SUBJECT VISIT SEQNO REPEATN
VRDIR

This data set contains one observation for each variable in
each data set. Variables that are in all data sets within the
project have ALL as the data set name so that they do not
need to be constantly repeated. Although not shown in this
example, many other variable specific items such as formats
and variable length can also be included in this control file.

OBS DSN VAR PG LABEL
1 ALL SUBJECT $ Patient number
2 ALL PTINIT $ Patient initials
3 DEMOG DOB $ Date of birth
4 DEMOG SEX S Sex
5 MEDHIS MEDHISNO 8 Medical History Number
6 MEDHIS MHDT $ Date of medical history
7 PHYSEXAM PHDT $ Physical exam. date
8 PHYSEXAM WT $ Weight

The data sets DBDIR and VRDIR are used to build the data
dictionary and to document the data sets and the variables

that they contain.

FLDDIR

The data set FLDDIR identifies data constraints for each
data entry field or variable. These constraints can be used
to build data exception and error trapping reports.

OBS DSN VAR CHKTYPE CHKTEXT
1 DEMOG CENTRE notmiss
2 DEMOG RACE list (r1iv,'2','3")
3 MEDHIS MHDT format date7.

Several different types of checks are possible. Shown here
are:

. notmiss the variable may not contain
missing values

. list the value must be in the list of
values in CHKTEXT

. format the formatted value of the

variable (using the format in
CHKTEXT) must not be
missing. User defined formats
are permitted.

BUILDING MACRO VARIABLES

Each of the control files is used to create a series of macro
variables. The observations are counted and the observation
number becomes a part of the macro variable name. This
results in names such as &LIVEDBI1, &LIVEDB?2,
&LIVEDBS, ...

Although the macro language does not have an array
statement per se this series of macro variables can be used
as a vector of values. Effectively this vector becomes a
macro array.

Building the list of data sets

In the following example the variable I @ counts the
observation number. It is then converted to a left justified
character variable (II) ®, which is appended to the name of
the macro variable ®. The macro variables are created
using the CALL SYMPUT routine.®

data null ;
set datamgt.dbdir end=eof;
i+l; O
ii=left(put(i,3.)); ®
call symput ('livedb'||®ii,trim(dsn)); @
call symput ('keys'||ii, keyvar); @
if eof then call symput('livecnt',ii); ©
run;

Using this DATA step and the DBDIR data set from above,
the second observation yields the macro variable
&LIVEDB?2 as MEDHIS and the associated key fields are
stored in &KEYS2 as SUBJECT MEDHISNO SEQNO.
Since there is one observation for each data set in the
project, the total number of observations in the data set
DBDIR will be the same as the number of data sets in the

project and this number is stored in &LIVECNT @.

Building the variable list

The information for each individual variable is also read in
a similar manner. The data set name is included @ as is the
name of each variable @. Other information that can be
transferred into macro variables includes variable labels ©,
formats, length, and variable type @.

data null ;
set datamgt.vrdir end=eof;
i+1;
ii=left (put(i,3.));
call symput('vdsn'||ii,dsn); ©
call symput('var'||ii,var); @
call symput ('label'||ii,label); ©
call symput ('vtyp'||ii,vartype); O
if eof then call symput ('varcnt',6 ii);
run;

Building the field check list

A similar data step is applied to the data set FLDDIR. Since
these macro variables are used less frequently, they are only
loaded into the symbol table when they are needed. The
step that reads the data set is shown below in the section
that also discusses how these macro variables are utilized.

USING &&VAR&I CONSTRUCTS AS MACRO
ARRAYS

Within a macro, a macro %DO loop can be used to step
through the list of macro variables that contain the names of
data sets or variables within a data set. The index for a
%DO loop is also a macro variable and it can be used as
part of the name of the macro variable that is to be resolved.

As was shown above, the macro variable name is formed by
concatenating a number onto the name portion. In the
following SYMPUT the value contained in the character
variable ii is concatenated onto 'LIVEDB'. The subsequent
macro variable will contain the value stored in the data step
variable DSN.

call symput ('livedb'||ii,trim(dsn));

Resolving & &var&i
The following macro %DO loop will execute &LIVECNT
times.

$do i = $to &livecnt;
&&livedb&i
%$end;

When &LIVECNT is 4 the loop creates the macro variable
list of:

&LIVEDB1 &LIVEDB2 &LIVEDB3 &LIVEDB4

which further resolves to:

DEMOG MEDHIS PHYSEXAM VITALS

The process of the resolution of macro variables can be
viewed in the LOG by using the SYMBOLGEN system
option.

Stepping through a list of data sets

We now have the ability to step through a list of data sets.
The following macro loops through each data set in the
study. The PROC FSEDIT is executed for each data set @
using the appropriate customized SCREEN (of the same
name) @.

$do jj = 1 %to &livecnt;
proc fsedit data=livedb.&&livedbs&jj O
screen=appls.descrn.&&livedb&jj...screen; ®
run;
send;

Notice the use of the three decimal points (dots) @. More
than one is required as the SAS interpreter will see them as
delimiters when they immediately follow a macro variable.

Checking for duplicate observations

In the macro %DUPCHK, which follows, each data set is to
be checked for duplicate observations by using the
appropriate list of BY variables. Again we step through the
data sets ©@. The BY variable list for the data set
&&livedb&jj will be stored in &&keys&jj @. The macro
%NW @ (Carpenter, 1998, p.193 the macro %COUNT is
similar to %NW) counts the number of variables in the list
which is then stored in &KEYCNT. The data can be sorted
using the key variables @, and FIRST and LAST processing
can also be used @ to determine if there are duplicate
observations.

$macro chkdup;
$do jj = 1 %to &livecnt; ©
snw (&&keys&]jj®, wordvar=key,wordcnt=keycnt) ©
* Sort the data sets for the
* key variables;
proc sort data=live.&&livedb&jj out=base;
by &&keys&jj; @
run;

* Check for duplicate key values;

$let dupp = 0;

data dupp; set base;

by &&keysé&ijj;

* determine if this is a dup obs;

if not (first.&&key&keycnt and
last.&&key&keyent) ; @

call symput ('dupp','1l');

run;

$if &dupp %then %do;
proc print data=dupp;
id &&keys&jj;
titlel "&&livedb&jj";
title2
"DUPLICATE KEYFIELDS in LIVE Data set";
run;
send;
%$end; * end the DSN do loop;
$mend chkeddup;

Coordinating two macro variable lists

Sometimes the loop through the list of data sets will also
require a second loop to pass through the variable list
appropriate for each data set. This requires a double %DO
loop with coordination between the two. In the following
example we build a series of zero observation data sets that
will be used as prototypes for the analysis data sets . For
each data set the list of variables in the KEEP= option, the
LENGTH statement, and the LABEL statement is built
dynamically. Notice in each these statements the outer loop
(&JJ) increments once for each data set while the inner loop
(&KK) cycles through all possible combinations of data sets
and variables. A macro %IF statement selects the
appropriate variables for a given data set.

$macro bldlive;
%$do jj = 1 %to &livecnt;
* One data step for each data set;
data livedb.&&livedb&jj (keep= @
%$* Build the var list to keep for this DB;
%do kk = 1 %to &varcnt; (2]
$if &&livedb&jj=&&vdsn&kk
or &&vdsn&kk=ALL %then &&var&kk;@)
%$end;
)
* Use length to define variable attributes;
length (4]
%$do kk = 1 %$to &varcnt;
$if &&livedb&jj=&&vdsn&kk or
&&vdsn&kk=ALL %then &&var&kk &&vtypé&kk;
%$end;

* Define the variable labels;
label O
%do kk = 1 %to &varcnt;
$1if &&livedbé&jj=&&vdsn&kk
or &&vdsn&kk=ALL
$then &&var&kk = "&&label&kk";
%$end;

i
stop;

run;
%$end;

Within the DATA step, %DO loops are used to build a
KEEP= data set option @, LENGTH statement®, and a
LABEL statement @ each using a variable list appropriate
to that data set. Since the variable loop encompasses all
variables in all data sets the %IF @ is used to select the
appropriate variables from the jj™ data set.

Two %DO loops are used to coordinate the two lists of
macro variables. The outer loop (with index of &JJ) steps
through the list of data sets. The inner loop (with index
&KK) steps through all the variables for all the data sets.
Since we are only interested in the variables for the data set
identified by &&LIVEDB&IJJ, that value is compared to the
value of the data set in the inner loop (&&VDSN&KK) ©.

Since the inner loop must pass through all variables in all
data sets for each data set of interest, there is a built in
inefficiency. This inefficiency is avoided in the following
example dealing with the field checks.

Building a list while within a loop

The values in the FLDDIR data set are not loaded into
macro variables until they are needed. This means that if
we are within a macro loop that spans data sets
(&&LIVEDB&IJJ), we can create the field check list
appropriate only for that particular data set. Consequently
the symbol table will not include macro variables that are
not needed.

$do jj = 1 %to &livecnt;
%$* check if dsn present;
$exists(livedb.&&livedb&jj,no=&no) O

$if &exists = N %then
$put live.&&livedb&jj is not yet
present in live.;
$else %if &exists = Y %then %do;
$put * Field error check for &&livedb&jj

***************************,-

* Build macro vars that will be used to;
* construct the tests;
%$let fldcent = O;
data _null_;
set datamgt.flddir

(where= (dsn="&&livedb&jj")) end=eof;®
i+1;
ii=left(put(i,3.));

call symput ('ftyp'||ii,trim(chktype));
call symput ('ftxt'||ii,trim(chktext)) ;
if eof then call symput ('fldent',ii);
run;

(
call symput ('fvar'||ii,trim(var)); ©
(
(
4

$if &fldent gt 0 %then %do; ©

We can first filter for the data sets that already exist by
using the %EXIST macro @ (Carpenter, 1998, p.149). The
DATA NULL_ step that creates the macro variables only
reads those observations from FLDDIR that match the name
of the data set of interest (&&LIVEDB&JJ) @. The macro
variables are then built © for each observation that passes
the WHERE criteria. It is entirely possible that there will be
no observations for a particular data set, this results in
&FLDCNT =0 @. This is noted using a %IF @ prior to
performing the checks.

Field checks are made using IF-THEN-ELSE processing
and assignment statements that are built inside of a data step
by using the macro variables created in the previous step.

In the code below any detected field errors are stored in the
data set TEMPERR @. Each observation receives a date
stamp with the date the error was first detected @. A macro
%DO loop O steps through each of the field checks for this
data set (&&LIVEDB&JJ).

* Perform field and intra-field checks;
data temperr (keep= status &&keys&jj dsn var
count msg text value chkdate); (1]
set datamgt.&&livedb&ijj;
by &&keys&jj;

* Date these field check problems ;
* were first detected) ;

retain chkdate $sysfunc(today()); @
format chkdate date9.;

* Count the number of times this ;

* problem has been detected;

* Status will be controlled by the ;
* manager - initialize to NEW;
length status $12;

retain count 1 status 'NEW';

* Specify various lengths to the ;

* data set variables;

* VALUE 1is only given a length of 15;

* this can cause some truncation (in display) ;
length dsn var $8 value $15 text msg $100;

* Place the name of the data set into;
* a data variable;
retain dsn "&&livedb&jj";

%* Build the Field and Intra-Observation;
%$* Field error checks;

$do i = 1 %to &fldent; ©

$if %upcase(&&ftyp&i) = LIST %then %do; (4]
if &&fvarsi not in&&ftxt&i then do; ©
var = "g&fvar&i"; @
msg = 'Value is not on list';
text = "&&ftxt&i";
value = &&fvaré&i;
output temperr;
end;
%end;

There are several types of field checks, including LIST
which specifies a list of acceptable values. When
&&FTYP&I is LIST @, an IF-THEN-DO block is defined
which checks to see if the value stored in the variable
named in &&FVAR&I is in the list stored in &&FTEXT&I.
When the value is not in the list @, a series of assignment
statements are executed @. For the second observation in
FLDDIR:

OBS DSN VAR CHKTYPE CHKTEXT
2 DEMOG RACE list (r1v,'2','3")
the DO block becomes:
if RACE not in('1','2','3') then do;
var = "RACE";
msg = 'Value is not on list';
text = ll(llll '2'1 |3|)||,.

value = RACE;
output temperr;
end;

USING &&VAR&I MACRO ARRAYS IN SCL
PROGRAMS

Within a SCL program it is not possible to use the
&&VAR&I macro variable form. Any direct macro
variable references made with the use of ampersands will be
resolved at the compilation of the SCL program rather than
at its execution. Instead macro variables are accessed by
using the SYMGET and SYMGETN functions to create
SCL variables.

Simple macro variables are retrieved directly without the
use of subscripts. In the following example the project code
and the task path have been stored in macro variables with
the names of project and path respectfully. These are

retrieved using the SYMGET function to create SCL
variables which are then used to build a /ibref.

* Determine path to the two DE data locations;
path = symget ('path');
project = symget ('project');

opath = trim(path)||'\'||trim(project) ||
trim(tst) || '\data\']| |els;
* Establish the libref for the DE;
sysrc = libname ('ode',opath) ;

When you want to step through a series of macro variables
that have been created with a subscript, a loop is again used.
This time, of course, it will be a SCL loop @ and the SCL
variable is used as the index to identify the specific macro
variable. The SCL loop creates a numeric index variable,
which is converted to character @. This index is then
appended to the root name of the macro variable series ©
and the concatenated value is retrieved using SYMGET or
SYMGETN @.

* Step through the list of data sets;
cnt = symgetn('livecnt');
do i=1 to cnt; (1]

ii = left(put(i,3.)); @
* Get the data set name and open it.;
dsn = 'datamgt.'

| |left (symget ('1livedb' | |11©)); @
dsid = open(dsn) ;

SUMMARY

Control data sets are used to store any project, data set, or
variable specific information that will be needed by the
application programs. This information includes the names
of data sets, the variables within those data sets, variable
attributes, and field check information. These control data
sets are then used to create a series of macro variables.
Application programs that require project specific
information, such as the names of data sets and variables,
use these macro variable lists to dynamically build the SAS
code needed for the project/data set/variable of interest.

Dynamic code building requires the use of SAS macros and
a number of macro statements. The macro %DO loop is
used extensively as is the &&VAR&I macro variable form.
The double ampersand macro variable (&&VAR&I) acts
like a macro variable array with VAR as the array name and
the &I macro variable as the subscript. The macro variables
themselves are generally created from the control data sets
by the use of the CALL SYMPUT routine.

This is an advanced macro topic. Creating the SAS
programs and macros that can take advantage of

& &V AR&I macro variables is not initially easy. You may
need to practice and work with the techniques discussed in
this paper for awhile before dynamic programming
techniques become second nature for you.

REFERENCES

Burlew, Michele M., S4S® Macro Programming Made
Easy, Cary, NC: SAS Institute, Inc., 1998, 280 pp.

Carpenter, Arthur L., 1997, "Resolving and Using &&var&i
Macro Variables", Proceedings of the Twenty-Second
Annual SAS User Group International Conference, Cary,
NC: SAS Institute Inc .

Carpenter, Arthur L., 1998, "Advanced Macro Topics:
Utilities and Examples", Proceedings of the Twenty-Third
Annual SAS User Group International Conference, Cary,
NC: SAS Institute Inc.

Carpenter, Arthur L., 1998, Carpenter's Complete Guide to
the SAS ®Macro Language, Cary, NC: SAS Institute Inc.,
242pp.

Carpenter, Arthur L. and Richard O. Smith, 2002, "Library
and File Management: Building a Dynamic Application",
Proceedings of the Twenty-Seventh Annual SAS User Group
International Conference, Cary, NC: SAS Institute Inc.

ABOUT THE AUTHORS

Richard Smith and Art Carpenter are SAS Certified
Professionals™. Both are senior partners at Data
Explorations, a SAS Alliance Member™, which provides
data management, analyses, and SAS programming services
nationwide.

SAsS.

SAS Alliance
Silver Member

Certified
Professional

Version 8

Arthur L. Carpenter

Art Carpenter's publications list includes three books on
SAS topics (Annotate: Simply the Basics, Quick Results
with SAS/GRAPH® Software, and Carpenter's Complete
Guide to the SAS® Macro Language), two chapters in
Reporting from the Field, and over three dozen papers and
posters presented at various user group conferences. Art
has been using SAS since 1976 and has served in a variety
of positions in user groups at the local, regional, and
national level.

Richard O. Smith

Richard Smith has a masters in Biology/Ecology and has
provided complete data management and analysis services
for numerous environmental research projects as a senior
biologist, SAS programmer, and project manager. He has
also provided programming and management services for
the health related industries. He has been using SAS
extensively since 1981.

AUTHOR CONTACT

Data Explorations

2270 Camino Vida Roble, Suite L
Carlsbad, CA 92009

Arthur L. Carpenter
(760) 945-0613

art@caloxy.com

Richard O. Smith
(760) 438-1336
ROSmith@SciX.com

TRADEMARK INFORMATION

SAS, SAS/AF, SAS/GRAPH, SAS Certified Professional,
and SAS Alliance Partner are registered trademarks of SAS
Institute Inc. in the USA and other countries.

® indicates USA registration.

