
Getting More For Less: A Few SAS® Programming Efficiency Issues
Arthur L. Carpenter

California Occidental Consultants

ABSTRACT
The old saying goes “If there is one way to do it in
SAS®, there are three ways to do it.” Inevitably,
when this is said in a group, there will be someone
(probably a Quality PartnerTM) who will chime in with
“And I will show you a fourth way.” It is of course
wonderful to be working with a language that has the
flexibility of multiple programming solutions, but this
flexibility can come with a price. Very often the most
obvious coding solution turns out not to be the most
efficient one. It is not unusual to find programs
written by programmers with a view to the end result,
but with no understanding of the process of the best
way of getting there.

If there are multiple solutions to a programming
problem, which solution is the correct one? And then
the bigger question becomes, ‘Does it make a
difference?’

KEYWORDS
Efficiency, programming style

INTRODUCTION
Just as there are many paths to the top of the
proverbial mountain, most programming problems
have more than one coding solution. Each solution
has tradeoffs; a complex program may execute very
fast but may be difficult to maintain, character
variables of minimal length save on data set size but
may minimize stored information, and a program
designed for ease of use may require more
resources for both development and maintenance.
Efficiency in programming is much more than
selecting the fastest or coolest statement. It is much
more about your approach to the task of creating a
programming solution to a problem.

As the programmer/developer you should ask some
questions before you start to write code.

é Should the program be easy to maintain?
é Should it execute as fast as possible?
é Should the data base size be minimized?
é Do system resources such as memory need to
be conserved?

The knee jerk response is ‘Yes’ for each of the above
questions, but of course in actuality, it may not be
possible to create a solution that is optimal in each
area. For instance compressed data sets will
minimize data set size, but compression also slows
the processing of the program.

The solution is rarely simple. Consider the problem
of writing a program to save time. One needs to ask
what kind of time or perhaps whose time? Is time a
measure of the time to process (CPU Time), time to
read and write data (I/O Time), or time to create and
maintain the program (Programmer Time)?

As you consider these issues, you will develop a
programming approach. Your approach to the
problem, and your choice of procedures and
statements will determine the efficiency of your
program.

WHAT IS EFFICIENCY? - THE PROS AND
CONS
Given the conflicting issues, the definition of
efficiency itself comes into question. An efficient
program must not only solve the problem for which it
is written, but should also meet the goals of the
developer based on questions such as those
expressed above. Based on these questions
priorities must be dtermined, these priorities become
program goals, and an efficient program will meet
these goals.

é Should the program be easy to maintain?
Complex programs are more difficult to maintain.
Very often increased complexity can decrease
execution time. If the increased complexity saves a
few seconds, but if maintenance time increases by
hours, the tradeoff may not be worth it.

é Should it execute as fast as possible?
Normally faster is better, but the cost of development
and maintenance may easily offset any savings.

é Should the data set size be minimized?
Smaller data sets require less disk storage space,
and this is a worthy goal. If the decreased size is
achieved by compression, however, additional time
will be required to decompress and then recompress
the data set whenever it is read or rewritten.

Decreased size can also be achieved by reducing
the length of data set variables, however this may also
result in a reduced ability to store accurate or
complete information.

é Do system resources such as memory need to
be conserved?
Macro variables can be retrieved quickly because
they are stored in memory, however large numbers of
macro variables will reduce available memory.
Reduced available memory may further limit the use
of statements such as the CLASS statement in PROC
MEANS.

Inefficient programs are usually created by
programmers that do not even ask these questions.
These programs often lack a specific coding style or
purpose.

PROGRAMMING STYLE
Your coding style is determined to a great extent on
your determination of the priorities outlined in the
previous section. The style of the program should
reflect a thoughtful evaluation of all of theses issues.
All too often milliseconds are gained at the expense of
hours of programming time.

Many programmers take pride in writing code that is
both quick and uses the ‘just right’ set of techniques.
While this may demonstrate programming expertise,
it may not truly be the best program style. Develop a
programming style that takes into account the above
issues while also utilizing the best appropriate set of
program statements.

Once you have determined your programming
priorities, you will need to plan your program to take
advantage of the things that will make a difference.

THINGS THAT MAKE A DIFFERENCE

é Minimize steps
Of all the things that you can do to make a program
more efficient, this one can have the greatest impact.
Evaluate the structure of the program to minimize the
number of individual steps. Combine DATA steps
and PROC steps when possible. Usually this will
mean that you will also make fewer passes of the
individual data sets.

é Minimize the number of data set reads
When reading a data set do everything with it that
you can as soon as you can. A classic example that
I encountered used a series of 17 DATA steps to

break a single large data set into 17 distinct subsets.
This required 17 passes of the large data set. The
programmer had been unaware that the DATA
statement allows multiple data sets to be designated
with output controlled with the OUTPUT statement.

é Minimize the use of PROC SORT
Sorting on any computer is always time consuming.
Try to minimize the number of sorts required. Many
data sets that are created by PROC steps (e.g.
MEANS, SUMMARY, FREQ, REG) will be created in
a known sort order. Anticipate the order and avoid
the sort. When a data set must be sorted and
resorted multiple times consider creating indexes or
at least try to fully exploit each sort. Many operations
and PROC steps that require sorting can be avoided
by the use of SQL.

é Use table lookup techniques
A long series of IF statements can easily slow a
DATA step. When making a series of mutually
exclusive IF-THEN determinations use an ELSE to set
up successive IF statements. This way once an
expression is TRUE further IF statements will not be
processed. Consider the following series of IF
statements used to designate a part name from a part
code :

if code=1 then part='abc';
if code=2 then part='def';
if code=3 then part='ghi';

Regardless of the value of CODE, all three IF
statements are executed. Preceding all but the first
IF with an ELSE, means that as soon as one of the
expressions is true the remaining ELSE IF statements
are not executed. The code becomes:

if code=1 then part='abc';
else if code=2 then part='def';
else if code=3 then part='ghi';

A further gain in efficiency can be realized by
avoiding the use of IF-THEN-ELSE processing
altogether. A format can be created by using PROC
FORMAT and the PUT or INPUT functions.

proc format;
value coder
 1='abc'
 2='def'
 3='ghi';
run;

data new; set old;
 part = put(code,coder.);
 run;

é Write the LOG to a file
For programs that generate a large LOG, rerouting
the LOG to a file by using either the ALTLOG= option
or PROC PRINTTO, can save both time (some time is
spent generating the video display of the LOG) and
memory (the LOG is stored in memory, which on
large jobs may require intervention to clear).

é Use the WHERE statement/option
The WHERE statement can be much more efficient
than the subsetting IF. Also, unlike the subsetting IF,
it can be applied directly to the incoming data set as
a data set option (recommended method).

set old(where=(code<5));

When an index is present the WHERE will, if
appropriate, use it to maximum benefit. The gains in
efficiency over the subsetting IF can be substantial,
because only the observations that meet the criteria
are actually read from the incoming data set.

Since the WHERE can be used in most PROC steps,
the use of DATA steps that only create a data subset
that is to be used in a procedure (say PRINT), can
be avoided. This reduces the number of steps and
the number of data reads.

A BIT OF FINESSE
There are many things to think about when coding for
efficiency. Because of space limitations, only a small
fraction of these can be included in this paper.
While the following items may not provide as great a
gain as those noted above, they are no less important
as tools, and they should definitely be understood by
the programmer.

é Compression
Used to reduce storage requirements, compression
can be used to reduce data sets by as much as 85%.
The greatest gains will be for data sets with long
character variables that contain repeated values
(such as blanks). Because the data set must be
compressed and then uncompressed prior to use,
there is an increase in processing time.
Compression is by default off and can be turned on
globally by using the COMPRESS system option or
individually for a specific data set by using the
COMPRESS= data set option.

é Indexes
Indexes allow the programmer to set up one or more
logical sorts on a data set without physically sorting it.
This can reduce the number of physical sorts of a
data set and can decrease data set access time
when using a WHERE. The cost is in the creation
and maintenance of the indexes. The indexes must
be recreated each time the data set is modified and
the indexes themselves can take up significant
storage space.

é Nested functions
The nesting of function calls can reduce the number
of variables that need to be created in a DATA step.
The following statements retrieve the two characters
following the '-' in the variable STATION.

col = index(station,'-');
depth = substr(station,col,2);

Creation of the variable COL can be avoided by
nesting the INDEX function within the call to the
SUBSTR function.

depth = substr(station,index(station,'-
'),2);

This small efficiency gain can be offset by more
complicated and harder to maintain code. Nesting
function calls more than three deep is generally
thought to be excessive (from a code maintenance
perspective).

é Compiled stored macros
When a macro is first called it must be compiled
before it can be executed. The compiled code can
be stored permanently so that it will not need to be
compiled again in a later session. Individually the
processing gain is usually small, however if an
application has many macro calls using stored
macros can result in significant decreases in
processing times. Be sure to update the stored code
each time the macro definition changes, otherwise
the new macro definition will remain uncompiled and
the old compiled version will continue to execute.

é Structured Query Language, SQL
PROC SQL is used to include SQL statements into
traditional SAS programs. In a number of situations
SQL can be used to create data sets that are both
sorted (without using PROC SORT) or summarized
(without using MEANS or SUMMARY). Often the use
of SQL reduces the number of steps needed and
may also reduce processing time. SQL is not always
more efficient in processing time, in the number of
statements, or in the complexity of the code.

é Use the KEEP= and DROP= data set options
Reduce the number of variables that must be carried
along from data set to data set by eliminating
unneeded variables as soon as possible. By using
the KEEP= option, the programmer also documents
the variables that are a part of a specific data set.

é Use the RETAIN statement to initialize values.
Because assignment statements are executed for
each incoming observation, constant values should
always be assigned through the RETAIN statement.
Unlike the assignment statement the retain statement
is applied during the compilation of the DATA step.
Similarly variable initialization can be made through
the ARRAY statement.

é Control variable length
Use the LENGTH statement to make sure that any
given variable does not take up more storage space
than is necessary. Numeric variables that serve as
flags or codes can often be stored as character
values with no loss of information. Integer values
such as SAS dates can be stored precisely in four
bytes rather than the default length for numeric
variables of eight bytes.

é Data set structure
Since different types of analysis require different
data set structures, plan your data set structure
according to how the data are to be used. Try to
avoid a succession of either DATA steps or the use
of PROC TRANSPOSE to rearrange your data.

SUMMARY
Writing efficient code is not as simple as just making
the program execute as fast as possible. You must
take into consideration a number of other factors. Is
faster as important as maintainable code? What
resources are most important; processing time,
storage space, memory, programmer time?

Select the objectives of the program and then select
your coding style to reflect these objectives. It is not
sufficient to say that you just want the code to be fast
or cool. Although I must say, that sometimes, just
writing cool code can be an objective in its own right.

REFERENCES
The easy to read and easy to understand reference
manual for the topic of efficiency is SAS®

Programming Tips: A Guide to Efficient SAS
Processing, Cary, NC: SAS Institute Inc., 1990.
155pp. Although this text has been around for a long
time it still is packed with good and relevant
information.

ABOUT THE AUTHOR
Art Carpenter’s publications list includes two
chapters in Reporting from the Field, the two
books Quick Results with SAS/GRAPH®

Software, and Carpenter's Complete Guide
to the SAS® Macro Language and over three

dozen papers and posters presented at various user group
conferences. Art has been using SAS since 1976 and has
served as a steering committee chairperson of both the
Southern California SAS User's Group, SoCalSUG, and the
San Diego SAS Users Group, SANDS; a conference cochair
of the Western Users of SAS Software regional conference,
WUSS; and Section Chair at the SAS User’s Group
International conference, SUGI.

Art is a SAS Quality PartnerTM and through California
Occidental Consultants he teaches SAS courses and
provides contract SAS programming support nationwide.

AUTHOR CONTACT
Art Carpenter
California Occidental Consultants
PO Box 6199
Oceanside, CA 92058-6199

(760) 945-0613

art@caloxy.com
www.caloxy.com

TRADEMARK INFORMATION
SAS and SAS Quality Partner are registered
trademarks of SAS Institute, Inc. in the USA and
other countries.
® indicates USA registration.

